Suites numériques, démonstration par récurrence et limites

Programme

Contenu:

- o La suite (u_n) tend vers $+\infty$ si tout intervalle de la forme $[A; \infty[$ contient toutes les valeurs u_n à partir d'un certain rang. Cas des suites croissantes non majorées. Suite tendant vers $-\infty$.
- La suite (u_n) converge vers le nombre réel l si tout intervalle ouvert contenant l contient toutes les valeurs u_n à partir d?un certain rang.
- o Limites et comparaison. Théorèmes des gendarmes.
- o Opérations sur les limites.
- \circ Comportement d'une suite géométrique (q_n) où q est un nombre réel.
- o Théorème admis : toute suite croissante majorée (ou décroissante minorée) converge

Capacités attendues :

- Établir la convergence d'une suite, ou sa divergence vers $+\infty$ ou $-\infty$.
- Raisonner par récurrence pour établir une propriété d'une suite.
- Étudier des phénomènes d'évolution modélisables par une suite.

Démonstrations:

- \circ Toute suite croissante non majorée tend vers $+\infty$.
- \circ Limite de (q_n) , après démonstration par récurrence de l'inégalité de Bernoulli.
- o Divergence vers $+\infty$ d'une suite minorée par une suite divergeant vers $+\infty$.

Algorithme:

- Recherche de seuils.
- Recherche de valeurs approchées de π , e, $\sqrt{2}$, $1 + \sqrt{52}$, $\ln(2)$, etc