PREMIERE - DS 3 (DÉRIVATION)

2023-2024

EXERCICE 1 8 points

Compléter les deux tableaux de l'annexe 1

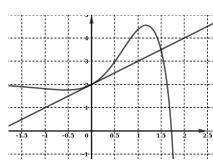
EXERCICE 2 4 points

Soit f une fonction définie sur $\mathbb R$ dont la courbe représentative $\mathcal C$ est donnée ci contre :

Sur le graphique est tracé la tangente au point d'abscisse 0. La tangente au point d'abscisse -0,5 est parallèle à l'axe des abscisses.

Donner des valeurs approchées de :

- \circ f(0)
- $\circ f'(0)$
- \circ f(-0,5)
- \circ f'(-0,5)



EXERCICE 3 10 points

Partie A - Equation de droite

Démontrer que la droite de coefficient directeur α qui passe par le point de coordonnées $A((x_A; y_A))$ a pour équation :

$$y = \alpha(x - x_A) + y_A$$

Partie B - Nombre dérivé

Soit f la fonction définie ci-dessous :

$$f: \quad \mathbb{R} \to \mathbb{R}$$
$$x \mapsto 2x^2 - 3$$

On note $\mathcal C$ sa courbe représentative.

- 1. Un cas particulier
 - (a) Soit h un réel strictement positif. Déterminer le taux de variation $\tau_{1,h}$ de f entre 1+h et 1
 - (b) En déduire que f est dérivable en 1 et donner f'(1).
 - (c) Déduire de la partie A l'équation de la tangente à $\mathcal C$ au point de $\mathcal C$ d'abscisse 1 est :

$$y = 4x - 5$$

- (d) Tracer cette tangente sur l'annexe 2.
- 2. Généralisation
 - (a) Soient a un réel et h un réel strictement positif. Déterminer le taux de variation $\tau_{a,h}$ de f entre a+h et a
 - (b) En déduire que f est dérivable en a et donner f'(a).

Annexe 1

Nom:	Classe:
Prénom :	

Soit a et b deux réels et n un entier naturel non nul.

Fonction	Ensemble de définition	Dérivée	ensemble de dérivabilité
f(x) = b		f'(x) =	
f(x) = ax + b			
$f(x) = x^2$			
$f(x) = x^3$			
$f(x) = x^n$			
$f(x) = \sqrt{x}$			
$f(x) = \frac{1}{x}$			

Soit u et v deux fonctions définies sur un intervalle I et (a,b) un couple de réels. La fonction f définie dans le tableau suivant est dérivable sur I dans tout les cas suivants :

Fonction	Dérivée
f(x) = u(x) + v(x)	f'(x) =
$f(x) = a \times u(x)$	
$f(x) = u(x) \times v(x)$	
$f(x) = \frac{1}{v(x)}$	
$f(x) = \frac{u(x)}{v(x)}$	

Annexe 2

Prénom:....

