Suites arithmétiques et géométriques

Exercice 1

L'objectif de cet exercice est d'utiliser les formules du cours sur les suites arithmétiques. Dans chacun des cas suivants, (u_n) est une suite arithmétique de raison r.

- 1. $u_0 = 10$ et r = 2, calculer u_{20} . 2. $u_8 = 9$ et $u_{13} = 10$ calculer r.
- 3. $u_0 = 9$ et $u_{13} = 12$ calculer u_8 .

Exercice 2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r telle que :

$$u_3 = a$$
 ou $a \in \mathbb{R}$

$$\sum_{k=3}^{120} u_k = 125$$

Exprimer a en fonction de r

Exercice 3

L'objectif de cet exercice est d'utiliser les formules du cours sur les suites géométriques. Dans chacun des cas suivants, (u_n) est une suite géométrique de raison q.

- 1. $u_0 = 1$ et q = 2, calculer u_7 . 2. $u_3 = -128$ et $q = \frac{1}{2}$, calculer u_8 . 3. $u_5 = -5$ et q = -2, calculer u_1 .
- 4. $u_8 = 3$ et $u_{10} = 12$ calculer les deux valeurs possibles de q.

Exercice 4

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique à termes strictement positifs. Montrer que pour tout $n \in \mathbb{N}^*$, $u_n = \sqrt{u_{n-1} \times u_{n+1}}$

★Exercice 5

(v) est la suite définie sur $\mathbb N$ par :

$$v_n = \frac{3^{n+5}}{5^n}$$

- 1. Montrer que v est une suite géométrique.
- 2. Donner la raison de cette suite et son sens de variation.

Exercice 6

On considère la suite (u_n) définie par $u_0 = 161$ et pour tout $n \in \mathbb{N}$

$$u_{n+1} = 0,6u_n + 8$$

- 1. Soit (v_n) la suite définie pour tout entier naturel n par $v_n = u_n 20$.
 - (a) Montrer que la suite (v_n) est géométrique.
 - (b) Exprimer v_n en fonction de n.
- 2. (a) Déduire de la question précédente u_n en fonction de n.
 - (b) En déduire u_{12}

Exercice 7

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{1}{3}u_n + 4$$

On pose pour tout entier naturel n, $v_n = u_n - 6$.

- 1. Pour tout entier naturel n, exprimer v_{n+1} en fonction de v_n . Quelle est la nature de la suite (v_n) .
- 2. Montrer que pour tout $n \in \mathbb{N}$, $u_n = -5 \times \left(\frac{1}{3}\right)^n + 6$.
- 3. En déduire (u_7) .

★Exercice 8

Soit a un réel et $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les suites définies par $u_0=a, v_0=-\frac{3a}{4}$ et pour tout $n\in\mathbb{N}$,

$$u_{n+1} = \frac{1}{5}(u_n + 4v_n)$$
 et $v_{n+1} = \frac{1}{5}(3u_n + 2v_n)$

Soit $(w_n)_{n\in\mathbb{N}}$ la suite définie par $w_n=3u_n+4v_n$

- 1. Dans cet partie, on prend a=2.
 - (a) Démontrer que pour tout $n \in \mathbb{N}$, $w_{n+1} = w_n$.
 - (b) En déduire que pour tout $n \in \mathbb{N}$, $w_n = 0$.
 - (c) déterminer u_n en fonction de v_n , puis v_{n+1} en fonction de v_n seulement.

- (d) Que peut-on déduire de la question précédente pour la suite (v_n) ?
- (e) Exprimer v_n en fonction de n, puis u_n en fonction de n.
- 2. Soit a un réel quelconque.
 - (a) Démontrer que pour tout $n \in \mathbb{N}$ $w_n = 0$.
 - (b) En déduire u_n en fonction de v_n , puis v_{n+1} en fonction de v_n seulement.
 - (c) Exprimer v_n en fonction de n, puis u_n en fonction de n.

Exercice 9

Avant le début des travaux de construction d'une autoroute, une équipe d'archéologie préventive procède à des sondages successifs en des points régulièrement espacés sur le terrain. Lorsque le *n*-ième sondage donne lieu à la découverte de vestiges, il est dit positif.

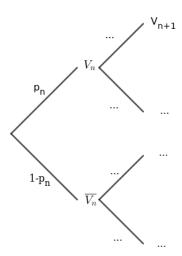
L'évènement : « le n-ième sondage est positif » est noté V_n , on note p_n la probabilité de l'évènement V_n .

L'expérience acquise au cours de ce type d'investigation permet de prévoir que :

- si un sondage est positif, le suivant a une probabilité égale à 0,6 d'être aussi positif;
- si un sondage est négatif, le suivant a une probabilité égale à 0,9 d'être aussi négatif. On suppose que le premier sondage est positif, c'est-à-dire : $p_1 = 1$.

1. Calculer les probabilités des évènements suivants :

- (a) A: « les 2^e et 3^e sondages sont positifs »;
- (b) B: « les 2^e et 3^e sondages sont négatifs ».
- 2. Calculer la probabilité p_3 pour que le $3^{\rm e}$ sondage soit positif.
- 3. n désigne un entier naturel supérieur ou égal à 2. Recopier et compléter l'arbre ci dessous en fonction des données de l'énoncé.



- 4. Pour tout entier naturel n non nul, établir que : $p_{n+1} = 0, 5p_n + 0, 1$.
- 5. On note u la suite définie, pour tout entier naturel n non nul par : $u_n = p_n 0, 2$.
 - (a) Démontrer que u est une suite géométrique, en préciser le premier terme et la raison.

- (b) Exprimer p_n en fonction de n.
- (c) Calculer la probabilité que le 20ème sondage soit positif.

Exercice 10

Partie A

Soit (u_n) la suite définie par son premier terme u_0 et, pour tout entier naturel n, par la relation

$$u_{n+1} = au_n + b$$
 (a et b réels non nuls tels que $a \neq 1$).

On pose, pour tout entier naturel n, $v_n = u_n - \frac{b}{1-a}$.

Démontrer que, la suite (v_n) est géométrique de raison a.

Partie B

En mars 2015, Max achète une plante verte mesurant 80 cm. On lui conseille de la tailler tous les ans, au mois de mars, en coupant un quart de sa hauteur. La plante poussera alors de 30 cm au cours des douze mois suivants.

Dès qu'il rentre chez lui, Max taille sa plante.

- 1. Quelle sera la hauteur de la plante en mars 2016 avant que Max ne la taille?
- 2. Pour tout entier naturel n, on note h_n la hauteur de la plante, avant sa taille, en mars de l'année (2015 + n).
 - (a) Justifier que, pour tout entier naturel n, $h_{n+1} = 0.75h_n + 30$.
 - (b) Conjecturer à l'aide de la calculatrice le sens de variations de la suite (h_n) .
 - (c) Justifier en utilisant le résultat de la partie A que la suite (w_n) définie pour tout entier naturel n par $w_n = h_n 120$ est une suite géométrique.

 Donner la raison de cette suite et le premier terme de cette suite et en déduire les variation de la suite (w_n) .
 - (d) Déduire de la question précédente que la suite (h_n) est strictement croissante.
 - (e) Déterminer w_n en fonction de n puis en déduire h_n en fonction de n.
 - (f) Calculer la hauteur de la plante en mars 2030 avant que max ne la taille.

Exercice 11

Soient $(u_n)_{n\in\mathbb{N}}$ la suite définie sur \mathbb{N} par :

$$\begin{cases} u_0 = 2 \\ \text{Pour tout } n \in \mathbb{N}, u_{n+1} = \frac{3u_n - 1}{u_n + 1} \end{cases}$$

- 1. Calculer u_1 et u_2
- 2. Résoudre l'équation $l = \frac{3l-1}{l+1}$. On note l la solution de cette équation.

3. Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par :

$$v_n = \frac{1}{u_n - l}$$

- (a) Calculer $v_{n+1} v_n$ et en déduire la nature de la suite (v_n) .
- (b) Déterminer v_n en fonction de n.
- 4. Déduire des questions précédentes u_n en fonction de n.
- 5. Donner alors la valeur exacte de u_5

Exercice 12

Soient $(u_n)_{n\in\mathbb{N}}$ la suite définie sur \mathbb{N} par :

$$\begin{cases} u_0 = 2 \\ \text{Pour tout } n \in \mathbb{N}, u_{n+1} = \frac{4u_n + 1}{u_n + 4} \end{cases}$$

- 1. Calculer u_1 et u_2
- 2. Résoudre l'équation $l = \frac{4l+1}{l+4}$. On note l_1 et l_2 les solutions de cette équation
- 3. Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par :

$$v_n = \frac{u_n - l_1}{u_n - l_2}$$

- (a) Montrer que (v_n) est une suite géométrique dont vous donnerez la raison et le premier terme.
- (b) En déduire v_n en fonction de n.
- 4. Déduire des questions précédentes u_n en fonction de n.
- 5. Donner alors la valeur exacte de u_4

Exercice 13

Chaque semaine, un agriculteur propose en vente directe à chacun de ses clients un panier de produits frais qui contient une seule bouteille de jus de fruits. Dans un esprit de développement durable, il fait le choix de bouteilles en verre incassable et demande à ce que chaque semaine, le client rapporte sa bouteille vide.

On suppose que le nombre de clients de l'agriculteur reste constant.

Une étude statistique réalisée donne les résultats suivants :

- o à l'issue de la première semaine, la probabilité qu'un client rapporte la bouteille de son panier est 0,9;
- o si le client a rapporté la bouteille de son panier une semaine, alors la probabilité qu'il ramène la bouteille du panier la semaine suivante est 0,95;
- o si le client n'a pas rapporté la bouteille de son panier une semaine, alors la probabilité qu'il ramène la bouteille du panier la semaine suivante est 0, 2.

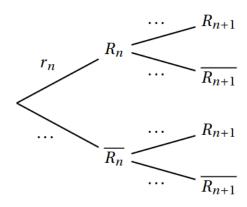
On choisit au hasard un client parmi la clientèle de l'agriculteur. Pour tout entier naturel n non nul, on note R_n l'évènement « le client rapporte la bouteille de son panier de la n-ième

semaine ».

- 1. (a) Modéliser la situation étudiée pour les deux premières semaines à l'aide d'un arbre pondéré qui fera intervenir les évènements R_1 et R_2 .
 - (b) Déterminer la probabilité que le client rapporte ses bouteilles des paniers de la première et de la deuxième semaine.
 - (c) Montrer que la probabilité que le client rapporte la bouteille du panier de la deuxième semaine est égale à 0,875.
 - (d) Sachant que le client a rapporté la bouteille de son panier de la deuxième semaine, quelle est la probabilité qu'il n'ait pas rapporté la bouteille de son panier de la première semaine?

On arrondira le résultat à 10^{-3} .

- 2. Pour tout entier naturel n non nul, on note r_n la probabilité que le client rapporte la bouteille du panier de la n-ième semaine. On a alors $r_n = p(R_n)$.
 - (a) Recopier et compléter l'arbre pondéré (aucune justification n'est attendue) :



- (b) Démontrer que pour tout entier naturel n non nul, $r_{n+1} = \frac{3}{4}r_n + \frac{1}{5}$.
- (c) Soit (u_n) la suite définie pour tout entier naturel non nul n par $u_n = r_n \frac{4}{5}$.
 - i. Démontrer que (u_n) est une suite géométrique dont on donnera la raison et le premier terme.
 - ii. En déduire u_n en fonction de n.
- (d) Déduire des questions précédentes que pour tout entier naturel n non nul,

$$r_n = 0, 1 \times \left(\frac{3}{4}\right)^{n-1} + \frac{4}{5}$$

(e) Conjecturer la limite de la suite (r_n) . Interpréter le résultat dans le contexte de l'exercice.