Suites, démonstration par récurrence et calcul de limites

Exercice 1

L'objectif de cet exercice est d'utiliser les formules du cours sur les suites arithmétiques et géo-

- 1. (u_n) est une suite arithmétique de raison $\frac{1}{2}$ et de premier terme $u_0 = 5$
 - (a) calculer u_{17} .
 - (b) calculer

$$\sum_{k=0}^{17} \left(u_k \right)$$

- 2. (v_n) est une suite géométrique de raison $\frac{3}{2}$ et de premier terme $v_0 = 1$.
 - (a) calculer v_{10} .
 - (b) calculer

$$\sum_{k=0}^{6} (v_k)$$

Exercice 2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r telle que :

$$u_3 = a \text{ ou } a \in \mathbb{R}$$

$$\sum_{k=3}^{120} u_k = 125$$

Exprimer a en fonction de r

Exercice 3

(v) est la suite définie sur $\mathbb N$ par :

$$v_n = \frac{2^{n+5}}{3^{n+1}}$$

- 1. Montrer que v est une suite géométrique.
- 2. Donner la raison de cette suite et son sens de variation.

- 1. Soit u la suite définie sur \mathbb{N}^* par $u_n = 5n^3 n^2 7$ Démontrer que u est croissante.
- 2. Soit v la suite définie sur \mathbb{N} par $v_{n+1} = 5v_n^2 + v_n + 3$ et $v_0 = -5$ Démontrer que v est croissante.
- 3. Soit w la suite définie sur \mathbb{N} par $w_n = \frac{3^{n+2}}{5^n}$ Démontrer que w est décroissante.

Exercice 5

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_1=2$ et tel que pour tout entier naturel n non nul, $u_{n+1}=2-\frac{1}{u_n}$.

- 1. Calculer u_2 , u_3 et u_4 . Les résultats seront donnés sous forme fractionnaire.
- 2. Démontrer que, pour tout entier naturel n non nul, $u_n = \frac{n+1}{n}$.

Exercice 6

On se place dans un reprère orthonormé et, pour tout entier naturel n, on définit les points (A_n) par leurs coordonnées $(x_n; y_n)$ de la manière suivante :

$$\begin{cases} x_0 = -3 \\ y_0 = 4 \end{cases} \text{ et pour tout entier naturel } n: \begin{cases} x_{n+1} = 0, 8x_n - 0, 6y_n \\ y_{n+1} = 0, 6x_n + 0, 8y_n \end{cases}$$

- 1. Déterminer les coordonnées des points A_0 , A_1 et A_2 .
- 2. Pour construire les points A_n ainsi obtenus, on écrit le programme Python suivant :

Recopier et compléter la dernière ligne de ce programme pour qu'il construise les points A_0 à A_{20} .

- 3. Pacer dans un repère orthonormé les points A_0 , A_1 et A_2 . Quel semble être l'ensemble auquel appartiennent les points A_n pour tout n entier naturel?
- 4. Démontrer la conjecture précédente.

Exercice 7

On considère la suite u définie sur \mathbb{N}^* par $u_n = \frac{1}{n}$

- 1. Etude numérique
 - (a) Démontrer que pour tout n > 10, $u_n \in]-0,1;0,1[$.
 - (b) Déterminer une valeur N_0 telle que pour tout $n > N_0$,

$$u_n \in]-0,01;0,01[$$

- 2. Généralisation.
 - (a) Soit e un réel strictement positif. Démontrer que pour $n > \frac{1}{e}$, on a $u_n < e$.
 - (b) Recopier et compléter la phrase suivante : "On peut en déduire que pour tout e > 0, l'intervalle] -e; e[contient toutes les valeurs . . . pour n > . . .".
 - (c) Que peut-on en déduire?

Exercice 8

On considère la suite v définie sur \mathbb{N} par $u_n = \frac{6\sqrt{n}+1}{2\sqrt{n}}$

- 1. calculer $v_{10}, v_{100}, v_{1000}$ et en donner des valeurs approchées à 10^{-2} .
- 2. Observer la représentation graphique de v sur une calculatrice. Quelle conjecture peut-on alors faire sur sa limite en $+\infty$?
- 3. Montrer que pour tout $n \in \mathbb{N}, v_n = 3 + \frac{1}{2\sqrt{n}}$.
- 4. On considère l'intervalle]2,95;3,05[. Monter que pour n supérieur à une certaine valeur N_0 à déterminer, on a $u_n \in]2,95;3,05[$.
- 5. Soit r un réel strictement positif. On considère alors l'intervalle]3-r, 3+r[. Monter que pour n supérieur à une certaine valeur N_0 à déterminer, on a $u_n \in]3-r; 3+r[$.
- 6. Conclure en utilisant la définition de la limite finie en $+\infty$.

Utiliser la définition de la limite d'une suite pour démontrer que :

$$\lim_{n \to +\infty} \sqrt{n+2} = +\infty$$

Exercice 10

Déterminer les limites des suites suivantes :

1.
$$\lim_{n \to +\infty} \frac{1}{n+1}$$

$$2. \lim_{n \to +\infty} \frac{n}{n+1}$$

3.
$$\lim_{n \to +\infty} \frac{n^2 + 2n - 3}{2n^2 + 4n + 1}$$

4.
$$\lim_{n \to +\infty} 8n^2 - 5n + 2$$

$$5. \lim_{n \to +\infty} 2n - 3\sqrt{n+1}$$

6.
$$\lim_{n \to +\infty} \frac{\sqrt{n}}{n+1}$$

7.
$$\lim_{n \to +\infty} 3n\sqrt{n} - 2n - 3\sqrt{n} - 2$$

8.
$$\lim_{n \to +\infty} \frac{3n\sqrt{n} - 2n - 3\sqrt{n} - 2}{n\sqrt{n+2}}$$
9. $\lim_{n \to +\infty} \frac{3n^2 - 2n - 3\sqrt{n} - 2}{n\sqrt{n+5}}$

9.
$$\lim_{n \to +\infty} \frac{3n^2 - 2n - 3\sqrt{n} - 2n}{n\sqrt{n+5}}$$

10.
$$\lim_{n \to +\infty} \frac{3n - 3\sqrt{n} - 2}{\sqrt{2n^2 + 2n + 3}}$$

11.
$$\lim_{n \to +\infty} \sqrt{n+1} - \sqrt{n}$$

Exercice 11

Démontrer que les suites (u_n) et (v_n) sont convergentes et déterminer leurs limites.

$$u_n = \frac{(-1)^n}{n+1}$$
 et $v_n = \frac{\cos(n)}{n^2}$

Exercice 12

On considère la suite (u_n) définie, pour tout entier $n \geq 1$, par :

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots + \frac{1}{\sqrt{n}}$$

1. Démontrer que pour tout entier naturel $n \geq 1$, et pour tout entier naturel k tel que $1 \le k \le n$, on a :

$$\frac{1}{\sqrt{k}} \ge \frac{1}{\sqrt{n}}$$

- 2. En déduire que pour tout $n \ge 1$, $u_n \ge \sqrt{n}$
- 3. Déterminer la limite de la suite (u_n) .

On considère la suite (u_n) définie, pour tout entier n non nul, par :

$$u_n = \sum_{k=1}^n \frac{1}{n+\sqrt{k}} = \frac{1}{n+\sqrt{1}} + \frac{1}{n+\sqrt{2}} + \frac{1}{n+\sqrt{3}} + \dots + \frac{1}{n+\sqrt{n}}$$

1. Démontrer que pour tout entier naturel n non nul, on a :

$$\frac{n}{n+\sqrt{n}} \le u_n \le \frac{n}{n+1}$$

2. Etudier la convergence des suites définies par :

(a)
$$v_n = \frac{n}{n + \sqrt{n}}$$

(b)
$$w_n = \frac{n}{n+1}$$

3. En déduire que la suite (u_n) est convergente et déterminer sa limite.

Exercice 14

Déterminer les limites des suites suivantes :

$$1. \ u_n = 2\left(-\frac{3}{5}\right)^n$$

2.
$$u_n = \left(-\frac{1}{3}\right)^n + \frac{2}{n}$$

3. $u_n = \frac{2^n - 1}{3^n}$
4. $u_n = \frac{3^n}{2^{2n}}$
5. $u_n = -\frac{2^{n+1}}{5^{2n}}$

3.
$$u_n = \frac{2^n - 1}{3^n}$$

4.
$$u_n = \frac{3^n}{2^{2n}}$$

$$5. \ u_n = -\frac{2^{n+1}}{5^{2n}}$$

Exercice 15

Soient $(u_n)_{n\in\mathbb{N}}$ la suite définie sur \mathbb{N} par :

$$\begin{cases} u_0 = 1 \\ \text{Pour tout } n \in \mathbb{N}, u_{n+1} = \frac{5u_n + 2}{-2u_n + 1} \end{cases}$$

- 1. Calculer u_1 et u_2 2. Résoudre l'équation $l = \frac{5l+2}{-2l+1}$. On note l la solution de cette équation.

3. Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par :

$$v_n = \frac{1}{u_n - l}$$

- (a) Calculer $v_{n+1} v_n$ et en déduire la nature de la suite (v_n) .
- (b) Déterminer v_n en fonction de n.
- 4. Déduire des questions précédentes u_n en fonction de n.
- 5. Donner alors la valeur exacte de u_5

Exercice 16

Soient $(u_n)_{n\in\mathbb{N}}$ la suite définie sur \mathbb{N} par :

$$\begin{cases} u_0 = 2 \\ \text{Pour tout } n \in \mathbb{N}, u_{n+1} = \frac{8u_n - 5}{u_n + 2} \end{cases}$$

- 1. Calculer u_1 et u_2
- 2. Résoudre l'équation $l = \frac{8l-5}{l+2}$. On note l_1 et l_2 les solutions de cette équation
- 3. Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par :

$$v_n = \frac{u_n - l_1}{u_n - l_2}$$

- (a) Montrer que (v_n) est une suite géométrique dont vous donnerez la raison et le premier terme.
- (b) En déduire v_n en fonction de n.
- 4. Déduire des questions précédentes u_n en fonction de n.
- 5. Donner alors la valeur exacte de u_4

Exercice 17

Soit (u_n) la suite numérique définie pour tout entier naturel n non nul par :

$$u_n = \frac{n(n+2)}{(n+1)^2}$$

1. Montrer que pour tout entier naturel n non nul, on a :

$$0 \le u_n \le 1$$

- 2. Etudier le sens de variation de la suite (u_n) .
- 3. Calculer la limite de (u_n) lorsque n tend vers $+\infty$.

Soit (u_n) la suite définie pour tout entier naturel $n \ge 1$ par :

$$u_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n \times (n+1)}$$

1. Vérifier que pour tout entier naturel k non nul, on a :

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

- 2. En déduire une expression simple de u_n en fonction de n.
- 3. Calculer la limite de (u_n) lorsque n tend vers $+\infty$.

Exercice 19

On considère la suite (u_n) définie par $u_0 = 161$ et pour tout $n \in \mathbb{N}$

$$u_{n+1} = 0,6u_n + 8$$

- 1. A l'aide d'une calculatrice, conjecturer le comportement de la suite (u_n) en $+\infty$.
- 2. Soit (v_n) la suite définie pour tout entier naturel n par $v_n = u_n 20$.
 - (a) Montrer que la suite (v_n) est géométrique.
 - (b) Exprimer v_n en fonction de n.
 - (c) Déterminer la limite de la suite (v_n) et en déduire celle de (u_n) .

Exercice 20

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{1}{3}u_n + 4$$

On pose pour tout entier naturel n, $v_n = u_n - 6$.

- 1. Pour tout entier naturel n, exprimer v_{n+1} en fonction de v_n . Quelle est la nature de la suite (v_n) .
- 2. Montrer que pour tout $n \in \mathbb{N}$, $u_n = -5 \times \left(\frac{1}{3}\right)^n + 6$.
- 3. Etudier la convergence de la suite (u_n) .

Exercice 21

Soit a un réel et (u_n) et (v_n) les suites définies par $u_0 = a$, $v_0 = -\frac{3a}{4}$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{1}{5}(u_n + 4v_n)$$
 et $v_{n+1} = \frac{1}{5}(3u_n + 2v_n)$

1. A l'aide d'une calculatrice, conjecturer le comportement des suites (u_n) et (v_n) en $+\infty$.

Semble-t-il dépendre de a?

- 2. Emettre une conjecture sur la suite $w_n = 3u_n + 4v_n$ et démontrer cette conjecture.
- 3. En déduire u_n en fonction de v_n , puis v_{n+1} en fonction de v_n seulement.
- 4. En déduire les limites des suites (u_n) et (v_n) .

Exercice 22

Soit (u_n) la suite définie sur \mathbb{N} par $u_0 = 3$ et pout tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{1}{4}u_n^2$$

- 1. Si la suite (u_n) converge, quelles sont les valeurs possibles de sa limite?
- 2. Montrer que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 3$.
- 3. Etudier les variations de la suite (u_n) .
- 4. Prouver que (u_n) converge et préciser sa limite.

Exercice 23

On considère le programme Python ci-dessous :

Python

 $\begin{array}{l} \mathrm{import\ math\ as\ m} \\ \mathrm{def\ f}(u\ ,s\ ,n): \\ \mathrm{for\ i\ in\ range}(n): \\ u=2^*u+1\text{-}\mathrm{i} \\ \mathrm{s=s+u} \\ \mathrm{return}[u,\!\mathrm{s}] \end{array}$

print(f(1,1,10))

- 1. Partie A
 - (a) Justifier que pour n = 3, l'affichage est [11,21].
 - (b) Reproduire et compléter le tableau suivant :

valeur de n	0	1	2	3	4	5
Affichage de u				11		
Affichage de S				21		

2. Partie B

Soit (u_n) et (S_n) les suites définies sur \mathbb{N} par $u_0 = 1$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = 2u_n + 1 - n$$
 et $S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$

(a) Pour n donné, que représente les valeurs affichées par l'algorithme de la partie A?

(b) Recopier et compléter le tableau ci-dessous. Quelle conjecture peut-on faire à partir de ces résultats?

n	0	1	2	3	4	5
u_n						
$u_n - n$						

- (c) Démontrer la conjecture.
- (d) En déduire l'expression de S_n en fonction de n et vérifier le résultat obtenu dans la partie A pour n = 5.

Exercice 24

Partie A

Soit (u_n) la suite définie par son premier terme u_0 et, pour tout entier naturel n, par la relation

$$u_{n+1} = au_n + b$$
 (a et b réels non nuls tels que $a \neq 1$).

On pose, pour tout entier naturel n, $v_n = u_n - \frac{b}{1-a}$.

- 1. Démontrer que, la suite (v_n) est géométrique de raison a.
- 2. En déduire que si a appartient à l'intervalle]-1; 1[, alors la suite (u_n) a pour limite $\frac{b}{1-a}$.

Partie B

En mars 2015, Max achète une plante verte mesurant 80 cm. On lui conseille de la tailler tous les ans, au mois de mars, en coupant un quart de sa hauteur. La plante poussera alors de 30 cm au cours des douze mois suivants.

Dès qu'il rentre chez lui, Max taille sa plante.

- 1. Quelle sera la hauteur de la plante en mars 2016 avant que Max ne la taille?
- 2. Pour tout entier naturel n, on note h_n la hauteur de la plante, avant sa taille, en mars de l'année (2015 + n).
 - (a) Justifier que, pour tout entier naturel n, $h_{n+1} = 0.75h_n + 30$.
 - (b) Conjecturer à l'aide de la calculatrice le sens de variations de la suite (h_n) . Démontrer cette conjecture (on pourra utiliser un raisonnement par récurrence).
 - (c) La suite (h_n) est-elle convergente? Justifier la réponse.

Exercice 25

Le but de cet exercice est d'étudier les suites de termes positifs dont le premier terme u_0 est strictement supérieur à 1 et possédant la propriété suivante : pour tout entier naturel n > 0, la somme des n premiers termes consécutifs est égale au produit des n premiers termes consécutifs. On admet qu'une telle suite existe et on la note (u_n) . Elle vérifie donc trois propriétés :

- $u_0 > 1$.
- pour tout $n \ge 0$, $u_n \ge 0$,
- pour tout n > 0, $u_0 + u_1 + \dots + u_{n-1} = u_0 \times u_1 \times \dots \times u_{n-1}$.

- 1. On choisit $u_0 = 3$. Déterminer u_1 et u_2 .
- 2. Pour tout entier n > 0, on note $s_n = u_0 + u_1 + \cdots + u_{n-1} = u_0 \times u_1 \times \cdots \times u_{n-1}$. On a en particulier $s_1 = u_0$.
 - (a) Vérifier que pour tout entier n > 0, $s_{n+1} = s_n + u_n$ et $s_n > 1$.
 - (b) En déduire que pour tout entier n > 0,

$$u_n = \frac{s_n}{s_n - 1}.$$

- (c) Montrer que pour tout $n \ge 0$, $u_n > 1$.
- 3. À l'aide de la fonction Python ci-contre, on veut calculer le terme u_n pour une valeur de n donnée.
 - **a.** Recopier et compléter la fonction Python ci-contre.
 - **b.** Le tableau ci-dessous donne des valeurs arrondies au millième de u_n pour différentes valeurs de l'entier n:

n	0	5	10	_~	30	40
u_n	3	1,140	1,079	1,043	1,030	1,023

Quelle conjecture peut-on faire sur la convergence de la suite (u_n) ?

$$def prog(n) :$$

$$u = 3$$

$$s = 0$$

$$for i in range(...) :$$

$$u = ...$$

$$s = ...$$

$$return u$$

- 4. (a) Justifier que pour tout entier n > 0, $s_n > n$.
 - (b) En déduire la limite de la suite (s_n) puis celle de la suite (u_n) .