TERMINALE MATHS EXPERT - INT2: NOMBRES COMPLEXES

2024-2025

Exercice 1

Résoudre dans \mathbb{C} les équations suivantes et donner le résultat sous forme algébrique :

- 1. 3(z+i) = 2i(1+iz)
- $2. \ z^2 + 4z + 13 = 0$
- 3. $z\overline{z} + 2 = 3iz \overline{z}$

Exercice 2

Les affirmations suivantes son-elles vraies ou fausses (Toutes réponses non justifiées ne rapportent aucun points):

- 1. Soient a et b deux nombres réels. Les nombres complexes $z_1 = a(a-1) + i(b^2+1)$ et $z_2 = a-1+2ib$ sont conjugué pour un unique couple (a;b).
- 2. Quel que soit le réel a, le nombre complexe $z = \frac{3i a}{1 + 3ai}$ est un nombre réel.

Exercice 3

On considère le polynôme P défini sur \mathbb{C} par

$$P(z) = 4z^4 - 16z^3 + 32z^2 - 40z + 25.$$

L'objectif de cet exercice est de déterminer les solutions dans $\mathbb C$ de l'équation P(z)=0 Soit Q le polynôme définit par :

$$Q(Z) = Z^2 - 4Z + 3$$

1

- 1. Déterminer la forme factorisée de Q(Z).
- 2. (a) Justifier que 0 n'est pas une solution de P(z) = 0
 - (b) Soit $z \in \mathbb{C}^*$

Montrer que
$$P(z) = 0$$
 si et seulement si $\left(z + \frac{5}{2z}\right)^2 - 4\left(z + \frac{5}{2z}\right) + 3 = 0$

- 3. Déduire des questions précédentes que p(z)=0 si et seulement si $z+\frac{5}{2z}=1$ ou $z+\frac{5}{2z}=3$.
- 4. (a) Résoudre dans \mathbb{C}^* l'équation $z + \frac{5}{2z} = 1$
 - (b) Résoudre dans \mathbb{C}^* l'équation $z + \frac{5}{2z} = 3$
- 5. En déduire les solutions de l'équation P(z) = 0 dans \mathbb{C} .